

Introducing self-healing functionalities for lithium ion batteries for smartphones

Dr. K. Burak DERMENCI

Battery Innovation Centre

Electromobility Research Centre (MOBI), Vrije Universiteit Brussel

Annual event circlemade.brussels, 23/05/2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957225

Project Identity

- Programme: Horizon 2020 Framework Programme
- **Call:** Self-healing functionalities for long lasting battery cell chemistries (LC-BAT-14-2020)

- **Type of Action**: Research and Innovation Action (RIA)
- Project Title (ID): Autonomous Polymer based Self-Healing Components for high performant LIBs (957225)

Acronym: BAT4EVER

Budget: 3.2M EUR

- **Duration**: 1st September 2020 29th February 2024 (42M)
- Consortium:9 beneficiaries from 6 countries(4 universities; 1 Research Centre; 4 industry)

Coordinator: Vrije Universiteit Brussel (VUB)

BAT4EVER – In a nutshell

Project Facts

BAT4EVER Aim & Vision

The development of substantially improved and sustainable, reliable battery cells is a must in the transition towards clean energy and clean mobility

Self-healing functionalities through polymer binder (e.g. ionogels) surface coating to protect electrodes

Utilization of Silicon anodes

Oxidation resistant, high-cycle recharging and thermal activation stable core/shell NMC cathodes.

Novel electrolytes based on polymerized ionic liquids

BAT4EVER Sustainability Objectives

Assess the environmental impacts of the SH battery

Assess the recyclability of the battery components

Assess the economic impacts of the SH battery

Maeva.Philippot@vub.be

BAI4EVER

a systematic overview to avoid shifti

is a systematic overview to avoid shifting of potential environmental burden

What is LCA?

Life Cycle Assessment...

is an international method for environmental assessment (ISO 14040/14044)

considers the entire life cycle of a product/service

6

The high quantity of the ionic liquid in the 140 mAh prototype cell dominates the results

Maeva.Philippot@vub.be

ВA

Upscaling the production to a gigafactory (36 GWh) decrease the environmental impacts Pilot scale impact

Maeva.Philippot@vub.be

8

Hydrometallurgical process with a solvent extraction step after shredding to recover ionic liquid

Recovery rate Ni, Co, Mn98%Recovery rate Cu, Al, Li90%

Maeva.Philippot@vub.be

BAT4EV

Recycling lowers the impact on human toxicity, material resources, and ozone depletion

9

Maeva.Philippot@vub.be

Comparison with benchmark

10

Climate change impact

Economic performance

- Costs of the active materials assessed → the SH polymer is responsible for 42 to 43% of the costs of the cell manufacturing (depending on the factory location)
- Levelized cost of energy storage (LCOES) → most of the LCOES originates from the use stage

Maeva.Philippot@vub.be

Conclusion

Results:

• On prototype level, high quantity of ionic liquid distorts the results

- Upscaling to GWh factory scale decreased the environmental impacts up to 65%
- The ionic liquid can be recycled with a 95% recovery rate, hence reducing the impacts on human toxicity, resource depletion and ozone depletion
- When the lifetime of the battery can be extended to 9 years, the self-healing batteries outperform benchmark batteries
- The SH polymer contributes up to 43% of the manufacturing costs. However, the operation phase is more important for the LCOES

What's next?

(Assoc. Prof.) Dr. K. Burak DERMENCI

Senior Researcher Project Manager

Kamil.Burak.Dermenci@vub.be